Bayesian Probabilities and the Histories Algebra
نویسنده
چکیده
We attempt a justification of a generalisation of the consistent histories programme using a notion of probability that is valid for all complete sets of history propositions. This consists of introducing Cox’s axioms of probability theory and showing that our candidate notion of probability obeys them. We also give a generalisation of Bayes’ theorem and comment upon how Bayesianism should be useful for the quantum gravity/cosmology programmes.
منابع مشابه
A New Characterization of Probabilities in Bayesian Networks
We characterize probabilities in Bayesian networks in terms of algebraic expressions called quasi-probabilities. These are arrived at by casting Bayesian networks as noisy AND-OR-NOT networks, and viewing the subnetworks that lead to a node as arguments for or against a node. Quasiprobabilities are in a sense the “natural” algebra of Bayesian networks: we can easily compute the marginal quasi-p...
متن کاملDeveloping an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects
Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...
متن کاملBayesian Optimum Design Criterion for Multi Models Discrimination
The problem of obtaining the optimum design, which is able to discriminate between several rival models has been considered in this paper. We give an optimality-criterion, using a Bayesian approach. This is an extension of the Bayesian KL-optimality to more than two models. A modification is made to deal with nested models. The proposed Bayesian optimality criterion is a weighted average, where...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کامل